
Lazy Approximation for Solving Continuous Finite-Horizon MDPs

Lihong Li and Michael L. Littman
RL3 Laboratory

Dept. of Computer Science
Rutgers University

Piscataway, NJ 08854
{lihong,mlittman}@cs.rutgers.edu

Abstract

Solving Markov decision processes (MDPs) with con-
tinuous state spaces is a challenge due to, among other
problems, the well-known curse of dimensionality.
Nevertheless, numerous real-world applications such
as transportation planning and telescope observation
scheduling exhibit a critical dependence on continuous
states. Current approaches to continuous-state MDPs
include discretizing their transition models. In this pa-
per, we propose and study an alternative, discretization-
free approach we calllazy approximation. Empirical
study shows that lazy approximation performs much
better than discretization, and we successfully applied
this new technique to a more realistic planetary rover
planning problem.

Introduction and Previous Work
Probabilistic planning focuses on decision making under
environment uncertainty, in contrast to conventional AI
planning (Fikes & Nilsson 1971). One of the principal
models for probabilistic planning is Markov decision pro-
cesses (MDPs) (Puterman 1994). Dynamic programming
(DP) (Bellman 1957) is the most common approach to solv-
ing MDPs, but it suffers from the well-knowncurse of di-
mensionality, which observes that state spaces increase ex-
ponentially with the number of dimensions used to describe
them. In addition to high dimensionality, many real-world
applications are continuous, raising additional challenges
for solution algorithms. Existing methods, including those
studied extensively in the reinforcement-learning (Sutton
& Barto 1998) literature, are typically for discrete MDPs.
Function approximation (Boyan, Moore, & Sutton 1995)
provides a possible solution when the MDP is continuous,
but it is usually difficult to analyze and can fail to converge
in many cases (Baird 1995; Bertsekas & Tsitsiklis 1996).

More recently, several techniques have been put for-
ward to tackle MDPs with continuous state spaces. Boyan
& Littman (2001) describe a class of MDPs calledtime-
dependent MDPs(TiMDPs), in which transitions take place
along a single, irreversible continuous dimension. They
provide an algorithm for computing an exact finite-horizon
value function by DP when the transition probabilities are

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

discrete and rewards are piecewise linear (PWL). This idea
was extended to higher dimensional state spaces by Feng
et al. (2004), who examined MDPs with two special types
of reward models: piecewise constant (PWC) and piecewise
linear convex (PWLC). Munos & Moore (2002) have dis-
cussed various ways for variable resolution in continuous
state spaces.

Although these approaches were successfully applied to
realistic problems such as transportation planning, telescope
observation scheduling, and rover planning, they make a
common assumption that the transition model of the MDP
is discrete, meaning positive probabilities are only assigned
to a finite set of outcomes. However, probability density
functions (pdfs) of transitions of many problems encoun-
tered in practice are continuous in nature. For example, in
rover planning the duration and energy consumption of an
action is best modelled as a normal distribution. For the ear-
lier algorithms to be applied to such problems, they must
discretize the continuous pdfs with sufficiently high resolu-
tion to preserve accuracy. Such discretization can result in
exponential blow-ups, severely limiting their applicability to
large-scale problems. Furthermore, additional errors will be
introduced by discretization.

In this paper, we go one step further by developing an al-
ternative approach to handling continuous state-space MDPs
with continuous transition pdfs. The philosophy of our ap-
proach islazy approximation(LA, for short): In contrast to
the aforementioned methods that approximate/discretize an
MDP at the first step and then solve the approximate model
exactly, the new method postpones the approximation stage
and is able to control the tradeoff between accuracy and
compactness of the computed value functions. For conve-
nience, the discretization method will be referred to as DM.

The rest of the paper is organized as follows. The next
section introduces the basic idea of LA in the simplest case,
and then discusses how to extend it to more general situa-
tions. Then, we provide several insights into the advantages
of LA, particularly its ability to control approximation er-
ror and compactness directly, and describe a series of em-
pirical validations. Finally, we present the application of
the technique to a planetary rover-planning problem. Space
limitation does not allow us to present all technical details.
Interested readers are referred to a longer paper by Li &
Littman (2005).

(a) (b) (c)

DP LA

Figure 1:Illustration of lazy approximation.

The Lazy-Approximation Method
LA will be developed in three steps. Starting with the nota-
tion and background used in later discussions, we move on
to the simplest case with one dimensional state space and
PWC transition models. Finally, we extend the idea to more
complex situations by removing these assumptions.

Preliminaries
A continuous, finite-horizon MDP is described as a four tu-
ple: M = 〈X, A,R, T 〉, whereX ⊂ <k is ak dimensional
state space,A is a finite set of actions,R(x, a) is the ex-
pected immediate reward by taking actiona ∈ A in state
x ∈ X, andT (x′|xa) = Pr{xt+1 = x′|xt = x, at = a}
is the Markovian transition function. For convenience, we
adopt the convention thatX = [0, 1)k.

Given an MDPM , our objective is to compute its optimal
value function at finite horizons:V n(x) with horizonn =
0, 1, 2, · · · , T . The Bellman equation provides a foundation
for dynamic programming:

V n+1(x) = max
a∈A

{
R(x, a) +

∫
X

T (x′|xa)V n(x′)dx′
}

. (1)

We defineV 0(x) ≡ 0, and assumeR(x, a) is PWC.
The transition functionT can be eitherabstract or rela-
tive (Boyan & Littman 2001). As will be shown shortly,
DP with a relative modelT will increase the order of poly-
nomial functionsV n asn increases, while an abstractT will
retain the order. For this reason, we will focus on the more
challenging relative models, i.e.,T (x′|xa) = Pr{x′− x|a}.

The Basic Idea
Consider the simplest case withk = 1 and PWCT (x′|xa).
SinceT (x′|xa) is for a relative model, the integral in Eqn (1)
is in fact aconvolutionof V n(x) andPr{x′ − x|a}. If both
V n(x) andPr{x′ − x|a} are PWC, then after a DP step at
horizonn + 1 (i.e., Eqn (1)), the value functionV n+1(x) is
in general PWL, as shown in Fig 1 (b).

Unfortunately, directly convolvingV n+1 with T (x′|xa)
at horizonn + 2 will in turn produce a piecewisequadratic
value functionV n+2. The order ofV n(x) increases withn,
which renders such a computation intractable in practice. To
make it possible to compute the value function efficiently at
higher horizons, we could do approximation beforeV n+2

is computed. Specifically, if we approximateV n+1 by a
PWC functionV̄ n+1 (Fig 1 (c)), it is then used in Eqn (1) to
obtainV̂ n+2, which is a reasonable approximation ofV n+2

when V̄ n+1 is close enough toV n+1. This approximation
procedure can be iterated and continues to higher horizons.
Fig 2 provides a comparative illustration of LA and DM.

LA : T T T
⇓ ⇓ ⇓

V 0 ≡ 0 DP=⇒ V̄ 1 DP=⇒ V̂ 2 LA=⇒ V̄ 2 DP=⇒ V̂ 3 LA=⇒ V̄ 3 DP=⇒ · · ·

DM : T T T
⇓ ⇓ ⇓
Ṫ Ṫ Ṫ
⇓ ⇓ ⇓

V 0 ≡ 0 DP=⇒ W̄ 1 DP=⇒ W̄ 2 DP=⇒ W̄ 3 DP=⇒ · · ·

Figure 2: Complete procedures of lazy approximation (LA) and
discretization method (DM) for solving finite-horizon MDPs.V̂ n

are PWL;V̄ n andW̄ n are PWC;Ṫ is discrete.

LA needs to turn a PWL function into a PWC one.
Clearly, there are a number of reasonable schemes for mak-
ing this transformation. A well-known relation between
||V − Ṽ ||∞ and the quality of policy induced from̃V (Singh
& Yee 1994) suggests we minimize theL∞ error:

εn = ||V̂ n − V̄ n||∞ = sup
x

|V̂ n(x)− V̄ n(x)|. (2)

We will be able to bound the approximation error ofV̄ n

later in terms ofεn.

Dealing with Non-PWC Transitions
In practice, however, the transition functionsT are not al-
ways PWC. In such cases, we could approximateT by a
PWCT̄ . Note that such an additional approximation will in-
troduce error in the resulting value-function approximations.
Our empirical studies later show that, even in this case, the
LA approach still outperforms DM.

Dealing with Higher Dimensional Spaces
A function is PWC in ak-dimensional space if there is a
rectangular partitionP of the state space such that (i) each
pieceP ∈ P is a hyper-rectangle (i.e., the Cartesian product
of intervals at each dimension), and (ii) the function value
within eachP ∈ P is constant. For simplicity, we will refer
to the term “hyper-rectangle” by “rectangle”.

The computation of Eqn (1) becomes more complicated
whenk > 1. We observed that the convolution of two PWC
functions produces a function defined on a rectangular par-
tition P and within eachP ∈ P the function is of the form:

V̂ n+1(~x) =

k∏
i=1

(aixi + bi), ~x ∈ P. (3)

Although this form seems disappointing at first glance, it
has a nice property that its extreme values are always ob-
tained at the vertices of rectangleP . Therefore, we have an
exact way to computēV n as an approximation tôV n so that
theL∞ error, εn, is minimized: It suffices to find the min-
imum and maximum values and take the midpoint, which
can be done inΘ(k) time.

A natural choice of data structures for rectangular parti-
tioning of a continuous space is kd-trees (Friedman, Bentley,
& Finkel 1977). But, there could be better choices in some
situations by incorporating background knowledge.

Dealing with Discrete State Components
In real-life applications, it is common for the state space to
consist of both continuous and discrete components. That is,

the state space isX×S, whereX ⊂ <k is continuous as be-
fore andS is discrete. For example, a rover has continuous
state components (e.g., remaining time and energy) as well
as discrete components such as whether particular subtasks
have been achieved or the status of observation equipment.

As shown below, such a situation does not pose any essen-
tial difficulty to LA. Therefore, we will stick to the notation
V n(x) to represent the value function in other parts of the
paper, and only in this subsection will we useV n(x, s)to
distinguish these two types of state components. Specif-
ically, the transition modelT (x′, s′|xsa) can be factored
into: T (x′, s′|xsa) = T (x′|xsas′) · T (s′|xsa). Conse-
quently, the integral of Eqn (1) is rewritten as:∫

S,X

T (x′, s′|xs)V n(x, s)dx′ds′

=

∫
S

(
T (s′|xsa)

∫
X

T (x′|xsas′)V n(x, s)dx′
)

ds′

=
∑
s′∈S

(
T (s′|xsa)

∫
X

T (x′|xsas′)V n(s, s)dx′
)

.

This derivation reduces the problem to the one considered
before, and each dynamic-programming step will still pro-
duce a function with pieces in the form of Eqn (3).

Theoretical Analysis
A complete analysis for LA is indeed difficult and beyond
the scope of this paper. Instead, we will provide some in-
sights on why it tends to be better than DM, including its
error- and compactness-control mechanism.

Error Control
We first observe that both themax and addition operators
of a set of PWC functions produces another PWC function.
This allows us to focus on the integral in Eqn (1) and sim-
plify analysis by dropping the inessentialmax andR(x, a).

Defineεn as before andεn to be the largest error in ap-
proximating the trueV n by V̄ n:

εn = ||V̄ n − V n||∞ = sup
x

|V̄ n − V n|. (4)

We can boundεn+1 in terms ofεn+1 andεn:

εn+1 = ||V̄ n+1 − V n+1||∞
≤ ||V̄ n+1 − V̂ n+1||∞ + ||V̂ n+1 − V n+1||∞

= εn+1 + sup
x

∣∣∣∣∫
X

T (x′|xa)
(
V̄ n(x′)− V n(x′)

)
dx′

∣∣∣∣
≤ εn+1 + εn sup

x

∣∣∣∣∫
X

T (x′|xa)dx′
∣∣∣∣

= εn+1 + εn. (5)

Therefore, ifε1, ε2, · · · , εn are kept small, we will end
up with an accurate value function approximationV̄ n at
horizonn. There are examples showing that the bound in
Eqn (5) is tight.

Similarly, we can bound the approximation error of DM.
Let W̄n be the function computed by the DM at horizonn,
and the approximation error be

ξn = ||W̄ n − V n||∞ = sup
x

|W̄ n − V n|.

Denote the discretized transition ofT by D = {di}—
a discrete pdf. In other words,D partitions the state space
into

⋃
i ∆i, each∆i corresponding to adi ∈ D. Now, define

ρn, which captures thesmoothnessof V n:

ρn =
∑

i

(
di

(
sup
Di

V n − inf
Di

V n

))
. (6)

Hence, the smootherV n is, the smallerρn is. Using these
definitions, we have the following bound onξn+1 in terms
of ξn andρn:

ξn+1 ≤ ρn + ξn. (7)

This bound is also tight. It is desirable to have a smooth
V n or a high resolution so thatρn is then small andξn+1 will
be close toξn, meaning the approximation error is small. In
practice, however, it is usually unknown a priori how smooth
V n is, and thus difficult to decide the appropriate resolution
r for discretization beforehand. Besides, the smoothness of
V n may not be uniform—only a certain state subspace may
need fine discretization.

In contrast, LA controlsεn+1 explicitly by keepingεn

small. We emphasize here thatεn is provided by the user
and is controllable. We believe this direct approach is easier
for people and provides more flexibility in making tradeoff
between accuracy and running time. More insights will be
provided after discussing the compactness-control mecha-
nism in the next subsection.

Compactness Control
In our experiment as well as analysis, we find that the mem-
ory (space) and running time required to computeV̂ n+1 (es-
pecially the integral) largely depends on the sizes ofV̄ n and
T , that is, how many rectangular pieces they have. In order
to prevent their sizes from growing without control, merg-
ing neighboring regions with similar values is usually nec-
essary. During merging, a small positiveδ is provided and
two neighboring regions are merged into one if their value
difference is less thanδ. Merging is also necessary for DM.
Otherwise, if the resolution of discretization at each dimen-
sion isr, then each DP step can, in the worst case, multiply
the function size by a factor ofrk.

Unlike DM, LA tries to keep the function compact by us-
ing the true transition, which is usually much more com-
pact than a discretized representation. Consequently, the
complexity of the resulting value-function approximations
largely depends on how complex the target value function
actually is. In this way, we could avoid unnecessarily high
resolution that is difficult to eliminate in DM. If, unfortu-
nately, the target function is too complicated to represent
compactly, LA will also suffer. But, this is not because of
the algorithm itself, but of the nature of the problem.

A Brief Summary
From the results above, we conclude that LA is more flexible
than DM: On the one hand, it directly makesεn small to
control the growth ofεn; on the other hand, it is able to
make a tradeoff betweenεn and the compactness ofV̄ n.

Empirical Study
We conducted two sets of experiments, one on synthetic
problems, and the other on a larger and more realistic prob-
lem of planetary rover planning.

Experiments on Synthetic Problems
In this section, we report results on randomly generated
problems. Two types of MDPs are considered: (I) There is
a positive, PWC reward function at a terminating horizon10
steps away, other rewards are0, and the transition functions
are PWC; (II) Same as (I) except that the transition function
is a normal distribution.

We first study how values ofεn in LA and resolutionr in
DM affect the running time and size of value-function ap-
proximations. Figs 3 and 4 plot the running time and size as
functions ofL∞-error and root mean squared error (RMSE)
of a typical run. The data in Fig 3 were obtained by varying
r andεn in DM and LA, respectively. In Fig 4, since the true
transition was approximated by a PWC function, we also in-
vestigated this affect by either (i) fixing the size of the PWC
transition representation to be20 and varyingεn, or (ii) fix-
ing εn = 0.01 and varying the size of the PWC transition
representation. Therefore, there are two series of data corre-
sponding to LA in Fig 4. Several observations follow.

1. In almost all cases, LA requires much less running time
and value-function representation sizes to achieve the
same error level. For example, the speedup is usually
about2 orders of magnitude (notice the logarithmic scale
on they-axis).

2. It is interesting to notice that LA requires more time to
achieve very small RMSE in Fig 4 (b). This is not surpris-
ing as the approximation scheme adopted in our experi-
ment is to minimize theL∞ error, rather that RMSE. In
comparison, LA is very good at keepingL∞ error small
(c.f., Fig 4 (a,c)).

3. Comparing the growth of the fixed-resolution and fixed-
epsilon curves of LA in Fig 4 suggests it may be better
to fix εn and then increase the accuracy in approximating
the transition model.

We next study how errors evolve as horizon increases. In
order to help visualize how well LA controls the error over
horizons, we show the true value functions, as well as the
approximations computed by DM and LA, at horizons1, 5,
and10 of a randomly selected but typical run (Fig 5). We
found that although both algorithms produce value functions
of comparable approximation errors at early horizons, the
error of DM grows faster than LA, and ends up takingmuch
longer to find amuch largerrepresentation of amuch less
accurateresult at horizon10.

Application to Rover Planning
Planning under uncertainties with resource limita-
tion (Bresina et al. 2002) such as the Mars rover
planning problem is the motivation behind this paper. A
number of non-trivial sources of uncertainty exist in rover
operation, including the duration and power consumption
of actions. Furthermore, the typical size of problems is

(a)

(b)

(c)

(d)

Figure 3: Results of a typical run on a problem instance of type
(I). In the DM curves, we varied the resolutionr from 10 to 500;
in the LA curves, we variedεn from 0.1 to 0.0001.

(a)

(b)

(c)

(d)

Figure 4: Results of a typical run on a problem instance of type
(II). In the DM curves, we varied the resolutionr from 10 to 500;
in the LA curves, we either varied the size of the PWC transition
from 3 to 20, fixing εn = 0.01, or variedεn from 0.1 to 0.0001,
fixing the size of the PWC transition to be20.

prohibitively large and, therefore, exact, optimal solutions
are not possible in most cases. Recent work modelled the
problem as a finite-horizon MDP (Bresinaet al. 2002;
Fenget al. 2004), and given the MDP model, the objective
is to approximate the optimal value function for each
horizon length to generate near-optimal plans.

The rover planning problem is as follows. Given a set
of locations, the associated target object at each location,
and the paths between locations, the rover is to travel around
and take pictures of targets before running out of time or
energy. The utility of taking a picture is dependent on the
target as well as when the picture is taken. Before taking a
picture, the rover has to perform a sequence of actions such
as identifying its location, tracking the object, navigating,
and initializing its instruments, etc., and some of the actions
are also dependent on other actions and the rover’s state.

Even for a minimal-size problem involving only two lo-
cations and targets, the state space is very large—it has a
discrete component of dimension12 (4096 discrete states)
and a continuous component of dimension2, and there are
14 actions (some are stochastic with uncertain durations and
power consumptions according to Gaussian distributions). It
is impossible to discretize the MDP model and obtain accu-
rate value functions using classical methods like value iter-
ation in a reasonable amount of time, even if human knowl-
edge is employed to prune unreachable states.

We applied LA to a version of this problem specified by
NASA researchers. PWC functions were used to approxi-
mate normal distributions appearing in action durations and
energy consumptions. We found that LA produced reason-
able and consistent results even if the PWC transition ap-
proximations are not complex. In particular, Fig 6 shows
the computed value function at horizon7 for the initial rover
configuration (i.e., its initial discrete state), using a PWC
transition representation of size64.

The graph, with plateaus and humps, are typical for value
functions if there are finitely many goal states with positive
utility and resource constraints (Fenget al. 2004). The flat,
zero-valued regions correspond to situations where either
time or energy is not sufficient to perform a task at any tar-
get (and hence the expected utility is0). When the rover has
more resources, it has positive utility expectations, and the
more resources it has, the higher the expectation is. At the
corner around the point(1, 1) is a hump because the amount
of resources allows the rover to carry out a second task, in-
creasing its utility.

Conclusions
Future Work There are several interesting directions for
future work. First, we are investigating more time- and
space-efficient ways for doing the intermediate stages of
lazy approximation, including improving the approximation
and merging mechanisms. Second, we are seeking other
data structures that best fit the purpose of efficiently repre-
senting functions for computing Eqn (1). Note that kd-trees
may not be the best choice. A promising approach is using
the spatial relation among pieces of the rectangular partic-
ipation. Third, it may be helpful to look into and compare

Figure 5:Value functions at horizons1, 5, 10 (from left to right). DM (with resolution of20) took0.1542s and produced a value function at
horizon10 of size401. LA (with ε = 0.01) took only0.008s and ended up with a function of size33 at horizon10.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

2

4

6

8

10

Figure 6:Computed value function for rover problem at horizon
7 for the initial configuration, with PWC transition of size64.

rectangular partitions with others such as the Kuhn triangu-
lations (Munos & Moore 2002), which also provides possi-
ble thoughts for better merging mechanisms.

Conclusions In this paper, we proposed and studied an
approach to solving continuous, finite-horizon MDPs. In
contrast to traditional discretization methods that approxi-
mate the MDP modelbeforehand, the new approach retains
a continuous model anddefersapproximation until neces-
sary. Some insights were given to explain the advantage of
lazy approximation, and it was shown that, on a set of syn-
thetic problems, lazy approximation performs consistently
much better than the discretization method. It was also suc-
cessfully applied to a large, real-life planning problem for
planetary rovers. We look forward to its application to other
non-trivial probabilistic-planning problems.

Acknowledgements

We thank Nicolas Meuleau, Zhengzhu Feng, Emmanuel Be-
nazera, Victor Lee, and the RL3 members for help in con-
ducting experiments. The Rutgers Center for Advanced In-
formation Processing (CAIP) provided their high-end ma-
chines for our experiments. This research is supported by
NASA (solicitation number: NRA2-38169).

References
Baird, L. 1995. Residual algorithms: Reinforcement learning
with function approximation. InProceedings of the Twelfth Inter-
national Conference on Machine Learning (ICML-95), 30–37.

Bellman, R. 1957.Dynamic Programming. Princeton University
Press.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996.Neuro-Dynamic Pro-
gramming. Athena Scientific.

Boyan, J. A., and Littman, M. L. 2001. Exact solutions to time-
dependent MDPs. InAdvances in Neural Information Processing
Systems 13 (NIPS-00), 1026–1032.

Boyan, J. A.; Moore, A. W.; and Sutton, R. S., eds. 1995.Pro-
ceedings of the ICML-95 Workshop on Value Function Approxi-
mation.

Bresina, J. L.; Dearden, R.; Meuleau, N.; Ramkrishnan, S.;
Smith, D. E.; and Washington, R. 2002. Planning under con-
tinuous time and resource uncertainty: A challenge for AI. In
Proceedings of the Eighteenth Conference on Uncertainty in Ar-
tificial Intelligence (UAI-02), 77–84.

Feng, Z.; Dearden, R.; Meuleau, N.; and Washington, R. 2004.
Dynamic programming for structured continuous Markov deci-
sion problems. InProceedings of the Twentieth Conference on
Uncertainty in Artificial Intelligence (UAI-04), 154–161.

Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving.Artificial
Intelligence2(3–4):189–208.

Friedman, J. H.; Bentley, J. L.; and Finkel, R. A. 1977. An
algorithm for finding best matches in logarithmic expected time.
ACM Transactions on Mathematical Software3(3):209–226.

Li, L., and Littman, M. L. 2005. Lazy approximation: A new
approach for solving continuous finite-horizon MDPs. Technical
Report 577, Department of Computer Science, Rutgers Univer-
sity.

Munos, R., and Moore, A. W. 2002. Variable resolution dis-
cretization in optimal control.Machine Learning49(2–3):291–
323.

Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York: Wiley-
Interscience.

Singh, S. P., and Yee, R. C. 1994. An upper bound on the loss
from approximate optimal-value functions.Machine Learning
16(3):227–233.

Sutton, R. S., and Barto, A. G. 1998.Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press.

